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PROPOSITION XXXIV, in which is investigated a certain curve arising from 

the hypothesis of acute angle. [An equidistantial of a straight has its chords be- 

tween it and the straight. | 
Let the straight CD join equal perpendiculars 

AC, BD standing upon any straight AB. Then AB, 

CD being bisected in the points M and H (Fig. 42.), 

MH is joined perpendicular (by Proposition Il) to 

each. Again in this hypothesis the angles at the join 

CD are supposed acute. Therefore in the quadrilater- 
al AMHC (by Corollary I after Proposition Ill) MH Hi 

will be less than AC. Hence now, if in MH produced Fig. 42. 

MK be taken equal to AC, the points C, K, D pertain to the curve here investi- 

gated. Then the angles at the join CK will be themselves acute (by Proposition 
VII). 

Therefore the join LX, which bisects, and therefore (by Proposition I1), 
is at right angles to AM, CK, will be likewise (by Corollary I after Proposition 

IIT) less than AC. Wherefore, if in LX produced we assume LF equal to AC 

or MK, the point F also will pertain to this curve. Further, joining CF, and 
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FK we find likewise two other points pertaining to the same curve. And so on 
for ever. 

But what I say for finding points between the points C and K, the same 
also holds good uniformly for finding points between the points K and D. Ob. 

viously the curve CAD, arising from the hypothesis of acute angle, is the line 

joining the extremities of all equal perpendiculars erected upon the same base 

toward the same part, which assuredly can come under the name ordinates. It 

is, 1 add, a line of such sort, that on account of the hypothesis of acute angle, 

from which it arises, it always is concave toward the parts of the opposite base 

AB. Quod quidem hoc loco declarandum, ac demonstrandum a nobis erat. 

Proposition XXXV._ If from any point L of the base AB the ordinate LF 
is drawn to this curve CKD: TI say the straight NFX perpendicular to LF must 
on both sides fall wholly toward the convex parts of this curve, and therefore it will 

be tungent to this curve. 

Proof. For if possible, let a certain point XY (Fig. 43.) of NF-X fall with- 
in the cavity of this curve. Let fall from the point X to the base AB the per- 
pendicular XP, which prolonged through XY meets the 

curve in a certain point R. Nowthus. In the quad- 

rilateral LF XP the angle at the point X will be neith- 

er right nor obtuse: else (Proposition V and Proposi- 

tion VI) would be destroyed the present hypothesis 

of acute angle. 

Therefore the aforesaid angle will be acute. 

Wherefore (from Corollary I after Proposition I11) 

PX and so much more PR will be greater than LF. Fig. 48. 
But this is absurd (from the preceding) against the nature of this curve. 

So NF produced must fall wholly toward the convex parts, and so it will 
be tangent to this curve. Quod erat demonstrandum. 

|To be Continued. | 

SUMMATION OF SERIES. 

By G. B. M. ZERR, A. M., Ph. D., President and Professor of Mathematics, The Russell College, Lebanon, Va. 
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The number of series summed above is deemed sufficient for illustration, 

although many more could be summed from the above relations. 

135 

98 38 58 78 105 

(58). 
(1- )( 1 (1 1 1 ) 90 

1 1 ( 1 1 ( 1 1 1 1 ih 

1 1 1 1 945 = 

( 22 



136 

DEPARTMENTS. 

SOLUTIONS OF PROBLEMS. 

ARITHMETIC. 

90. Proposed by B. F. FINKEL, A. M.,M.Sc., Professor of Mathematics and Physics, Drury College, Spring- 
field, Mo. 

Find the greatest number of inch balls that can be placed in a box 10 inches square 

and 5 inches deep. 

Solution by MARTIN SPINX, Wilmington, Ohio, and the PROPOSER. 

Using as a base a side of the box, we can place on this base, by square ar- 

rangement 50 balls. But by placing 5 balls in the first row, 4 in the second, and 

5 in the third, and so on, we can place 50 balls in the first layer, there being 6 

rows of 5 balls, and 5 rows of 4 balls. These eleven rows will leave .339 inches 

between the eleventh row and the end of the box. By placing the second layer 

of balls in the trihedral spaces of the first layer, the two layers will occupy a 

space 1 inch + {1*—[3(4)/3)]*} inches, 1.8165 inches, high. 
Since the centers of the first row in the second layer are .289 inches in 

advance of the centers of the first row in the first layer, it fullows that eleven 

rows can be put in the second layer, there being .339 inches—.289 inches, or .05 

inches more room than is needed. But the second layer contains 49 balls,—the 

six odd rows containing 4 each and the five even rows 5 each. In this we can 

place in the box twelve layers,—50 balls in each of the odd numbered layers, 
and 49 in each of the even numbered layers. This makes a tutal of 594 balls. 

Also solved, with different results, by G. B. M. ZERR, CHAS. C. CROSS, and FREMONT CRANE. 

90. Proposed by F. M. PRIEST, Mona House, St. Louis, Mo. 

A owes $6000 which is drawing 6% interest. He wishes to pay off the debt in six 
equal annual payments, the first to be due in one year. The whole portion of the claim 

unpaid at the end of each year to be accounted as principal, and to draw interest to the 

time of the next payment. Required the amount of each payment, so the six annual 

payments will discharge the obligation, interest and all. 

I. Proposed by P. S. BERG, Superintendent of Schools, Larimore, N. D.; J. A. MOORE. Professor of Mathe- 
matics. Millsaps College, Millsaps, Miss., M. E. GRABER, Mt. Eaton, 0.; MARTIN SPINX, Wilmington, 0., M. A. 
GRUBER, A. M., War Department, Washington, D. C. 

Let z=annual payment. 

Put a=debt, r—rate of interest, and n—=number of annual payments. 
We then have the general formula, 

——— 

if 

= 

\ 



to nth payment 

100 

which reduces to 

a(100 +r)"=2[100(100 + r)"-1+ 1002(100+r)"-2+ .. +100™-1(100 + r) + 100]. 

Now, substituting 6 for r, 6 for n, and 6000 for a, we obtain 

6000 x 1.06% =2( 1.065 + 1.064 + 1.063 + 1.06? + 1.0641). 

2=8511.114673536 + 6.9753 185376 =1220.1757+4. 

II. Solution by F. R. HONEY, Ph. B., New Haven, Conn. 

Let z=amount of each annual payment. 

6000+ .06 x 6000— =6360—z—amount left after first payment. 

And 6360—< + left after second 

payment. 

Similarly, 7146.096—3.1836z—amount left after third payment. 

Similarly, 7574.86176—4.374616z2—amount left after fourth payment. 

Similarly, 8029.3534656—5.63709296z—amount left after fifth payment. 

Similarly, 8511.114673536—6.9753185376z—amount after sixth 

8511.114673536 —6.97531853762—0. 
6.97531853762—8511.114673536. 

*, e=$1220.176—annual payment. 

III. Solution by G. B. M. ZERR, A. M.. Ph. D., President and Professor of Mathematics, The Russell Col- 
lege, Lebanon, Va.; W. H. DRANE, A. M., Professor of Mathematics, Jefferson Military College, Washington, Miss. 

The portions of the principal paid each year are as 

1, 1/1.06, 1/(1.06)*, 1/(1.06), 1/(1.06)*, 1/(1.06)5; or as (1.06)5, (1.06)4, 
(1.06)8, (1.06)*?, 1.06, 1; or as 1.338226, 1.262477, 1.191016, 1.1236, 1.06, 1. 

1.338226 + 1.262477 + 1.191016 + 1.1236 + 1.06 + 1--6.976319. 
(1/6.975319) x $6000 $860. 1757. 
$860. 1756 + $6000 x .06 $860. 1758 + $360 —$1220.1757, first payment. 

, $6000—$860.1757—$5139.8243, amount still unpaid. 
(1.06/6.975319) x $6000 —$911.7862., 
$911.7862+ $5139.8243 x .06=$911.7862 + $308.3895 —$1220.1757, second 

payment. 

$5139.8243 —$911.7862 =$4228.0381, amount still unpaid. 

[(1.06)? /6.975319] x $6000 —$966.4934. 
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$966.4934 + $4228 0381 x .06—$966.4934 + $253.6823—$1220.1757, third 
payment. 

$4228.038 1 —$966.4934—$3261.5447, amount still unpaid. 

[(1.06)*/6.975319] x $6000=$1024.4830. 

$1024. 4830 + $3261.5447 x .06—$1024.4830 + $195.6927—$1220.1757, 4th 
payment. 

$3261.5447 —$1024.4830=-$2237.0617, amount still unpaid. 

[(1.06}4 /6.975319] x $6000—=$1085.9520. 
$1085.9520 + $2237.0617 x .06 =$1085.9520 + $134.2237—$1220.1757, fifth 

payment. 

$2237 .0617 amount still unpaid. 
[(1.06)°/6.975319] x $6000:-=$1151.1091. 
$1151.1091 + $1151.1097 x .06=$1151.1091 + $69.0666—$1220.1757, sixth 

payment. 

$1151.1097—$1151.1091==$0.0006, unpaid still. 

The above is all the work necessary for determining each equal payment, 

and at the same time working out the problem in full. 

6000 x .06(1.06)° 
(1.06)6§—1 

91. Proposed by J. A. CALDERHEAD, M. Sc., Professor of Mathematics in Curry University, Pittsburg, Pa. 

$1000.00. Cleveland, Ohio, May 26, 1893. 

Two years after date I promise to pay John Davis, or order, one thousand dollars, 

for value received, interest six per cent. payable annually. J. M. Lewis. 

Indorsements: December 14, 1895, $560.56; May 11, 1896, $10.02; June 14, 1897, 

$545.06. 

Find, by the United States’ Rule, the amount due August 2, 1897. 

A short method by algebra is, p== —=$1220.176. 

Solution by G. B. M. ZERR, A. M., Ph. D., President and Professor of Mathematics, The Russell College, 
Lebanon, Va.; WALTER HUGH DRANE, A. M., Jefferson Military College, Washington, Miss.; and MARTIN 
SPINX, Wilmington, Ohio. 

Principal, $1000.00 

Interest to December 14, “1895, 2 years, 6 months, 18 days, : 153.00 

Amount, ‘ $1153.00 

First payment December 14, 1895, ; 560.56 

New principal, $ 592.44 
Interest to June 14, 1897, 1 year, 6 53.3196 

Second payment, May 1896, ; 10.02 

Third June 14, 1897, ‘ 545.06 555.08 

New principal, $ 90.6796 
Interest to August 1, 1897, 1 month, 18 days, ‘ 7254 

$91.4050 

Daniel G. Dorrance gets as a result $100.80. He computed interest on the annual payments. Mr. 

Drane, in a second solution does the same, but he gets a result of $100.138. 

Amount or balance due, 
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ReMARK. Mr. Drummond raises the question as to whether Mr. J. F. 

Travis’s solution of problem 87, Arithmetic, is strictly an arithmetical solution. 

To my mind it is strictly an algebraical solution. A pure arithmetical solution 

of a problem would involve only the operations of addition, subtraction, multi- 

plication, division, involution, and evolution, without the use of equations. A: 

solution in which the result sought is represented by some character, and then 
this character operated upon until certain conditions of the problem are fulfilled, 

which conditions are then stated in the form of an equation from which the num- 

erical value of the character is to be determined, is an algebraic solution. It is 

immaterial what sort of a character is used, whether it be (3), 3, x, ¢, or any 

other character. However, the solution referred to is a very good one, and by 

the use of such solutions students in arithmetic are given, unconsciously to them- 

selves, a most excellent preparation for the:study of algebra. The mathemati- 
cian is often called upon to solve problems in a certain way. When a problem 
is proposed and the restriction put upon it, viz., that it be solved by arithmetic, 

or algebra, or geometry, the problem often becomes impossible. From such un- 

fortunate restrictions, has arisen the idea of the insolvability of the three famous 

problems of geometry, viz., the Trisection of an Angle, the Duplication of the 

Cube, and the Quadrature of the Circle. These problems are each easily solved 

if the solutions are not restricted to the use of the straight edge and compass 

only. But with these restrictions they are absolutely unsolvable. 

There are many problems whose solutions cannot be effected when 

restricted in the way previously mentioned, but those referred to above are the 

only ones that have become famous. 

ALGEBRA. 

81. II. Solution by C. W. M. BLACK, A. M., Professor of Mathematics, Wesleyan Academy, Wilbraham, 
Mass. 

[See problem and solution I, in April number, page 105.] The proposi- 

tion cannot be proved unless r is integral and positive, as can be shown by sub- 

stitution of numerical values. 

Consider the only two fractions in whose denominators any factor as 
(a,—a,) appears, putting them in the form 

/[(a,—ag (uy — ay) ]=(,") 

/((a,—a, + P,a,*-*—...... +P,y-»)] 

where P,=the sum of the products of a,, a,, ...... a, taken k at a time. 

Combining, we have 

= 

ve 

} 

x 
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+Py_2) 

—a,"(a,"—*—P, a," Py-2)] 

Put the numerator of (1) in the form 

(a,"a,* *—a,'a,**)+..... +Py_(a,"—a,") 

+P, a,"—a,")...... (2) 

If n is not greater than r+ 2 each group of (2) and consequently the whole 

expression is divisible by (a,—a,). Ifn>r+2, let n=r+s; then change (2) to 

the form 

(3), 

the term in the second group of (3) being the same as the corresponding term of 

(2). Each group in (3) is also divisible by (a,—a,). Accordingly in all cases 

(1) can be reduced to a form in which (a,—a,) is not a factor of the denominator, 

and as the two fractions forming (1) are the only ones that contain (a,—a,) in 

their denominators, the original expression need not contain (a,—a,) in its de- 

nominator ; that is, (a,—a,) will divide into the numerator formed by adding 
the fractions as they stand. 

In like manner we prove that any other factor (a,—a,), ete., will divide 

into the numerator, or the numerator will be divisible by the entire lowest com- 

mon denominator. 

Now if r<n—1 each fraction, and consequently the sum of all, will have 

a numerator of lower degree in a,, a, a;, etc., than the denominator. But as 

the numerator is divisible by the denominator, this is possible only when the 
numerator equals zero. 

If r=n—1, numerator and denominator will have same degree, and the 

quotient can be only a numerical factor. Now in the numerator a," has for its 
coefficient the product of all factors not containing a,, which same coefficient it 

has in the expansion of the denominator. Therefore the quotient must equal 1. 

If ra the numerator is of a degree 1 higher than the denominator and 

the quotient must be of the first degree. In the numerator the coefficient of a,’ 
is the same as the coefficient of a,"~'(=a,’~") in denominator, these being the 

highest powers of a, in each. Then one term of the quotient must be a,. In 

& 
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like manner we show that a,, ay, ..... .a, must all be true of quotient, and as 

the expression is symmetrical with respect to these, the value must be 

@,+a,+a,+...... +4. 

GEOMETRY. 

87. Proposed by WALTER HUGH DRANE, A. M., Professor of heeanmeneene Jefferson Military Academy, 
Washington, Miss. 

Given any two straight lines in space, .1B, CD, which do not intersect. So construct 

upon one of the lines as base, a triangle, having its vertex in the other line, such that its 

perimeter shall be a minimum. 

I, Solution by the PROPOSER. 

Let AB and CD be the given straight lines. Pass planes through the line 

AB and the points C and D. In the plane of ABDE, inclined the same way and 
making the same angle with the line AB as ABFC, construct a parallelogram 
equal to CABF. Draw DG intersecting AB pro- 
duced in P. Join PC. Then PCD is the re- 
quired triangle. 

Proor. Take any other point P’ in the 
line AB. Join P’D, P’C, and P’G. Triangle 

P’'CA=triangle P’GA and triangle PCA=trian- 

gle PGA. Two sides and included angle being 

equal in each case. .*. P’C=PG and PC==PG. 
Now P’'D+ P’G>PD+PG. 

Q. E. D. 
By passing planes through CD and the points A and B, by a similar con- 

struction we may construct a minimum-perimeter triangle upon AP as base with 

its vertex in CD. 

"Also solved by F. R. HONEY. 

II. Solution by G. B. M. ZERR, A. M., Ph. D., President and Professor of Mathematics, The Russell College, 
Lebanon, Va. 

Let x+b(a—2x)=cy be the equation to EF with AB and AY as axes, and 

AB, EF the given lines, AB==a. Then if cot# + beotp—c the vertex C will move 

on EF, Let AC=r, CB=s. 

a(sin#+ sing) 

inf sin24 

dy sin y dy sin* 

. sing=—bsin#, this in (2) gives 

; 

Fics: 

‘ 



b24-c?—1 c?—b? +1 
Dbe 

2abe 

DC must be > EG and <HF. 

Let AG=m, EG=n, AH=h, HF=k. 

, cotd + -=a/DC, 

hn—km a(h—m) 

ak+hn—an—km ak+hn—an—km 

b must be less than unity or HF may intersect AB. 

Let m=n=1, h==a=10, k=4._ .°. b=}, c=§, 

cotp=131, 27’ 6", p=6° 31’ 56”. 

AD=DCcot@=33. 

89. Proposed by B. F. FINKEL, ‘A. M.,M. Sc., Professor of Mathematics and Physics, Drury College, Spring- 
field, Mo. 

Describe a circle tangent to three given circles. [From Chauvenet’s Geometry, page 
318, ex. 213. 

Solution by G. B. M. ZERR, A. M., Ph. D., President and Professor of Mathematics, The Russell College, 
Lebanon, Va.; and F, R. HONEY, Ph. B., Instructor in Mathematics in Trinity College, New Haven, Conn. 

In figure 2 let ZL, M, N be the circles radii a, b, c. 

With M as center and radius b—a describe a circle, also with N as center 

and radius c—a describe a circle. Draw a circle through LZ tangent to the circles 

last described at 7’, S then the center of this circle is the center of one of the tan- 

gent circles. Similarly we can find seven other tangent circles. 

e Of the eight circles one is tangent to the three circles externally, one is 

tangent internally, three are tangent to two externally and one internally, and 

three are tangent to 

two internally and 

one externally. 

In figure 1, to 

find a circle passing 

through a point F and 

tangent to two circles 

Cc, C’. Let H be the 
point where the ex- 

ternal common tan- 

gent meets C’C pro- Fig. 1. Fig. 2. 

duced. Through A'BE describe a circle cutting EH again in EF’. Draw BR 

meeting HE in U, and draw UP tangent to (, then the circle through PEE’ is 

the circle required. 

142 
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Two tangents can be drawn from U. 

If we had used the point where the internal common tangent cuts ('C’ we 
would have determined two other circles, four in all, satisfying the condition. 

Also solved by PROF. F. E. MILLER, and CHAS. C. CROSS. Prof. Cooper D. Schmitt did not solve 

the problem but gave several references where solutions are given. Pro’. J. Scheffer gave a short his- 

torical note on the problem. 

In a future issue of the MonTHLy, we expect to publish a somewhat ex- 

haustive discussion of this very interesting problem. 

90. Proposed by G. B. M. ZERR, A. M., Ph. D., President and Professor of Mathematics in Russell College, 
Lebanon, Va. 

The bisectors of the angles of the opposite sides (produced) of an inscribed quadri- 

lateral cut the sides at the angular points of a rhombus. 

Solution by G. I. HOPKINS. A. M., Professor of Mathematics in High School, Manchester, N. H.; J. K. ELL- 
WOOD, A. M., Principal of Colfax School, Pittsburg, Pa.; J. W. SCROGGS, Principal of Rogers Academy, Rogers, 
Ark.; NELSON L. RORAY, Professor of Mathematics, South Jersey Institute, Bridgeton, N. J.; HENRY N. DAVIS, 
Providence, R. I.; ALOIS F. KOVARIK, Professor of Mathematics, Decorah Institute, Decorah, Ia.; and the PRO- 
POSER. 

In the triangles AEK and LEC, 72 AEG= 

LLEC, ZEAK=ZLCE. 

LEKA=ZELC. £DKL=ZCLK. 

.. FH is perpendicular to KL at its middle 
point. Similarly, EZ is perpendicular to GH at its 
middle point. 

‘, In the right triangles KOG, KOH, KO=KO, 

KG=KH. Similarly KG--GL=LH. 

', KGLH is a rhombus. 

This problem was also solved in a similar manner by E. T. BUSH and S. L. ROWAN, of the Fresh- 

man Class of the University of Mississippi; P.S. BERG, W. H. DRANE, F. R. HONEY, E. R. ROBBINS, 

B. F. SINE, J. SCHEFFER, and J. F. TRAVIS. 

CALCULUS. 

70. Proposed by J. OWEN MAHONEY, B. E., M. Sc., Graduate Fellow in Mathematics in Vanderbilt Univer- 
sity, P. 0., Lynnville, Tenn. 

n 2r 

Prove * > ar- 1pai@ 
o 

where n is an integer. a is positive, and @ is e!(* 2), 

Solution by the PROPOSER. 

Consider the integral te dy, where a is real and positive. The 
2n 

poles given by y2"==—1 or zi! "=cos(a/2n) + isin(7/2n)=e* 2") —@ (say). 

It is evident that all the roots of y"=7 are given by w?"-!, where r may 

have the values 1, 2, 3, ...... n 

i 

j 

3 
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Hence y=@?"-!, About the origin O as center describe a semi-circle ABD 

with a very large radius, limited by the axis of X (see figure.) About the poles 

¢, Which correspond to the points y"=i, describe circles with a very small radius 

p. The proposed function being holomorphic in the portion of the plane lying 

between the circumferences p and the contour ABDA, the integrals 

d 

1+ yp 

relative to the circles and the boundary ABDA are equal. For points on the 
circles p y==@?"-! + pe® , and the integral becomes 

2r—1 2r— 

(when p becomes infinitesimal), 

9 2n ral 

For points on the semi-circle ABD, y==Rcos#+iRsin4, and the integral 

becomes, 

if" 

which is evidently equal to zero when k= , and we have left the integral along 

DA, which is 

evix etixdy etizdy 

cosax 
=J, dz, = 2 

cosaxdx 2r—1 

0 1+2 2n r=1 

Is this result correst? Forsyth gives, on page 41 of his T’heory of Fune- 

tions, the integral 

n 2r—1 

[Prof. Zerr remarks that the result is correct, as is easily seen from the 
following : 

. 

D 

© 

| | 

q 
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71. Proposed by J. C. CORBIN, Pine Bluff, Ark. 

_ Form the differential equation of the third order, of which 
y=c,e* is the complete primitive. 

n 2r— 

2 
r=1 

I. Solution by EDGAR ODELL LOVETT, Ph. D., Princeton University, Princeton, N. J. 

1°. This problem is a familiar one to students of differential equations. 

The original primitive together with the results of three successive differentia- 

tions, may be written 

y— ec, —e 8c, —e'c, =0, 

y' — 2e%c, +3e—%*c, —e*c, =0, 

—4e*c, —e7e,=0, 

—8ec, +27e %e, —e*c, =—0; 

The above is a system of linear and homogeneous equations in the quan- 

tities 1, e?c,, e %*c,, and e’c,, hence the determinant of their coefficients van- 

ishes, that is 

whence 

or finally 
—7y' + 6y=0 

is the differential equation of the third order whose complete primitive is 
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a 

1 1 1 1 ] 1 | ; 

4 9 1 3 8 0 7 7 

, 

y 8 —27 
—y 7 0 

y—y 1 0 

y"—y 7 0 : 

: 



y— ae — 

2°. Ifthe problem be generalized and the complete primitive taken in 

the form 

y— ae" —be—(m +n)x— —(), 

the corresponding differential equation of the third order is readily found to be 

+mn+n?* jy’ +malm+njy=0. 

The values m-=2 and n=1 give the original problem. 

3°. Ifthe problem be completely generalized and the original primitive 

taken in the form 

y—ae?? —be — ce 

the differential equation is 

+ (pq gr + —pqry=0. 

Putting p+q+r=—0 we have the second case above. If in addition to p+ 

q+r=0, p=2 and q=1, the first particular case appears again. 

II. Solution by WALTER HUGH DRANE, A. M., Professor of Mathematics, Jefferson Military College, 
Washington, Miss. 

(1) Differentiate (1). 

> ==2c,e%*—3c,e-%+¢,e". Subtract (1) from (2). 

Differentiate (3). 

2 

12c,e-%*, Snbtract twice (3) from (4). 

2 

dty Add 3 times (5) to (6). 

Q. KE. D. 

See Johnson’s Differential Equations, page 104, example 7. 

MECHANICS. 

61. Proposed by WILLIAM HOOVER, A. M., Ph. D., Professor of Mathematics and Astronomy, Ohio Univer- 
sity, Athens, Ohio. 

A body is suspended from a fixed point by an élastic string, which is stretched to‘ 

double its natural length when the body is in equilibrium. Find how much the body must 

be depressed, so that when let go, it may just reach the point of suspension. 

(2) 

(4) 

5) 

6) 
(6) dx 

dy 
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I. Solution by the PROPOSER. 

Let a’, a be the stretched and unstretched lengths of the string. T—the 

tension, A=the modulus of elasticity, W=the weight attached, and x=-the dis- 

tance of the latter from the point of suspension at any time t from the beginning 

of motion. 

By the problem, when a’=2a, T=W, and (1) gives A=W. 
The forces acting are W and 7' acting downward and upward ; then 

W dz _we W(2—a) 

Multiplying both sides of (2) by 2(dz/dt) and integrating, 

When x=2', (dx/dt)=0, and (3) gives C=—(g/a)(4ax’—2'*), and (8) is 

dx? 

When the body next comes to rest, (dx/dt)—0, and x=0, giving 4ax’—2'* 

=0, or 2’ =4a, or z’=0. C=0 in (8) gives 

Integrating, t= [V versin-1( = (6), 

the time for the motion. 

II. Solution by G. B. M. ZERR, A. M., Ph. D., President and Professor of Mathematics, The Russell College, 
Lebanon, Va. 

In what follows we neglect the weight of the string, #ssume Hooke’s Law, 

that the tention of the string is proportional to its extension beyond the natural 

length, holds throughout the motion. 
Let W=weight of body, /=:natural length of string, a=extension due to 

weight W, b=extension at the time body begins to rise after depression, r=ex- 

tension at any time ¢, T’==corresponding tension of string. 

The differential equation of motion is 

W-—T. But W=Mg, T=Mgzx/a. = (2). 

dz 

dt 

2 
( ) =(g/a)(2ax—-2?) +B. When t=0, r=), 

dt =0, B=(g/a)(b? —2ab). 

- 

g dz . 

re 
a VY 4ax—x* 

‘ 

= 

. 



di ) =(g/a)(2ax—a? +b? —2ab) =v?. 

When x=0, o-" (b—2a)=velocity of projection, h=height of projec- 

tion = but h=2l and a=! = a), but h= =. 

Ql=(b/21)(b—21) or b-=11 + y/5). 

62. Proposed by J. SCHEFFER, A. M., Hagerstown, Md. 

A particle of mass m moves in the circumference of an ellipse with constant rate v. 

It is constrained to move in that circumference by attractive forces in the two foci. To 

determine the magnitude of these forces, 

I. Solution by G. B. M. ZERR, A. M., Ph. D., President and Professor of Mathematics, The Russell College, 
Lebanon, Va. 

Let P be the particle mass m, CA=a, CB= b, PF=r, PF,=r,, CD=z, 
PD=y, force along r=f, force along r, =f,. R= 

normal reaction, Y=component of f and j', par- 
allel to AC, Y=component of f and f, parallel 

to CB, «*/a?+y? /b?=1, the equation to the 

ellipse. The equations of motion are 

; m(d?y/dt?) 

= Y+R(dx/ds) 

dx 
Now ds/dt=v - = = 

yaty? ! ay rr, 

= (4 8 aty? atyzy? (a? —x* 

dt/ dt aty?+b4x? a? a?) 

X=f,cosEPF, 

Y=f,cosDPF, +feosDPF=y( 

Substituting in (1) and (2), 

—ab®* mv? a==rr +rr, (ar, x—a%er, 
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3). 

a®bmv? (br4-a)f, +rr, (br, +a)f 

From (3) and (4) since r=(r,—71)/2e, 

hig abmv? 

II. Solution by WILLIAM HOOVER, A. M., Ph. D., Professor of Mathematics and Astronomy, Ohio Univer- 
sity, Athens, Ohio. 

Let p=the radius of curvature of the curve at any position, P, of the par- 

ticle, é==the angle included by either SP or HP, S and H being the foci, and 2a 

=the major axis. Let CD be the semi-diameter conjugate to CP, C being the 

center of ellipse. 
The normal components of the central attractions must together equal the 

centrifugal force. We may assume the forces in S and H as proportional 

to some power of CD ; and if the absolute intensities of the two forces are equal, 

say 
[u(CD)"+ /p 

CD? 
But pcos¢ = 

For v=a constant, requires that n=—2, showing plainly that the forces 

vary inversely as the prodyct of the focal distances of the particle. 

63. Proposed by A. H. BELL, HILLSBORO, II. 

From a horizontal support at a distance of ten feet apart, a beam 5 feet long and 10 

pounds weight is suspended by ropes attached to each end. The ropes are 3 and 5 feet re- 

spectively, in length. Required the angles made by the ropes and horizontal support. Al- 

so the stress upon each rope. 

Solution by G. B. M. ZERR, A. M., Ph. D., President and Professor of Mathematics, The Russell College, 
Lebanon, Va. 

Regarding the bar DE as uniform so that the middle point is the center of 

gravity, we must have, for equilibrium, the three 

forces AD, BE, GC passing through the same point 

C, with GC perpendicular to AB. 

The 2 ABC= Z CDE, and the 7 BAC= 2 CED. 
‘Let ABC=#6, 2 BAC= stress on BE=R, 

on AD=R,, weight of DE=W=10 pounds. Also 
AB=10, BE=ED=5, AD=3, AE*?=100+25—100 

180cos0=91. .°. A=45° 34’ 23”. 
Dk? =1004 9— 6V0cosp=25+ 25+ 50cosCED.. 

. 110cosp=59. cosp== = .53636. 33" 50". 
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Let figure 2 represent the force diagram, ab=W, be=R, ac=R,, Zabe= 

90°—6, Zbac=90°—g, Zach=6+ 9. 

R= Weosp/sin(6+ R, = Weos4/sin( 4+ @). 
*, R=5.5078 pounds, R, =7.1881 pounds. 

DIOPHANTINE ANALYSIS. 

61. Proposed by SYLVESTER ROBBINS, North Branch Depot, New Jersey. 

Investigate that infinite series of prime, integral, rational scalene triangles where 

the sides of every term are consecutive numbers; then take the necessary factors from the 

proper KEY, and by an expeditious method, find in their order the areas of ten initial 

terms. 

Solution by the PROPOSER. 

I. The KEY to this series of rational triangles is #, if 

282087, etc. Regard the saan side as the base, and drop panpeiiitiies from the 
opposite angle. Let x=4base. Notice that s—2 and x+2 are the segments of 
the base, and ;/[3(2?—1*)] is the altitude of the triangle. Find such values 
for x as will render }/[3(2?—1*)] rational. 

When z=], 2, 7, 26, 97, 362, 1351, 5042, 18817, 70226, 262087, 1/ [8(2* 
—1*)]=0, 3, 12, 45, 168, 627, 2320, 8733, 32592, 121635, 453948, etc. 

These values of x are the half-bases of the several triangles. They are 

also the numerators of the even convergents in the expansion of 1/3. The values 

of ;/[3(#*—1*)] are the altitudes of the same triangles, respectively, and they 

are also three times the denominators of the even convergents in the expansion 

of 1/3. Multiply one-half the base of a triangle by its perpendicular height, or, 

three times the product of the terms of the nth even convergent, must give the 

area of the nth triangle in the series. . 
Thus, 3x2x1=6 ;3x7x4=84 ; 3x 26x 15=1170 ; 3x 97 x 56—=162% ; 

3 x 362 x 209 =226974 ; 3 x 1351 x 780==3161340 ; 3 x 5042 x 2911—44031786 ; 3x 
18817 x 10864—613283664 ; 3 x 70226 x 40545—8541939510 ; 3 x 262087 x 151316 
=118973869476, etc. 

II. Numerators of even convergents in expansion of 4/3: 1, 2, 7, 26, 

97, 362, 1351, 5042, 18817, 70226, ete. Then $(7?—1*)=6 ; §(26®—2?)=84; 
$(972 —7?)=1170 ; $(862? —26? )==16296 ; 4(1351° —97? ) 226974 ; etc. 

III. Denominators of even convergents : 1, 4, 15, 56, 209, 780, 2911, ete. 

#(42—0)=6; $(15*—1*)=84; $(56? —4*)-=1170 ; $(209* —15?)=16296 ; 
— 56? )=226974 ; etc. 

IV. Let 2=the half-sum of the three sides of the triangle. Then 42-1, 

and are the remainders. 

(x) (4x) + 1]=square of triangle. —3*)==square. 
V )[(@? —3*)/8], the radius of inscribed circle. 

Put c=y+6 ; then 3[(y+6)? —3*]—square=(my +9)?. 

8y? +36y +4 8l=m*ty? + 18myt+81; =(18m—36) 

/(8—m?) ; and z=y+ 6=(18m—18—6m? 

wy 

: 

<1 
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Say m=, 3=}, jf, $, 7, 12; 38, ete. Substitute these values of m in the 

formula, and we obtain, when 

m= 1,z= 3, and [#*—3*)/3j= 0; 

m= j,z= 7, == 

m=}?, z= 291, = 56; 

x=1086. =209 ; etc. 

Here the several values of x, the half-sums of three sides, are also three 

times the numerators of the even convergents in the expansion of 13, and the 

several values of })/[(x*—3*)/3] are the radii of the inscribed circles, respect- 

ively, and also the denominators of the even convergents. Multiplying the half- 

sum by the radius of the inscribed circle, or taking three times the product of 

the terms of the nth even convergent in the expansion of }/3 will give the area 

of the nth triangle in the series where the common difference in sides is unity. 

V. Denominators of odd convergents : 1, 3, 11, 41, 153, 571, 2131, ete. 
4(3°—1*)==6; $(1582 —412) 16296 ; 

#(571? — 153? ) 226974 ; ete. 

VI. Numerators of odd convergents: 1, 5, 19, 71, 265, 989, 3691, ete. 

(24)?—(4)?=6 ; (94)?—(24)?=84 ; — (354)? = 

16296 ; (4943)* —(1324 )? 226974 ; ete. 

VII. Let #+1, x and x—1 be the remainders. Then 3x=the half-sum. 

1)(x)(z—1)=square of area. 3(a*—1?)=square. Put xz=y+2. 3[(y+ 

2)?—1*]=square=(my+3)?. ; y=(6m—12)/(3— 

x=(6m—6—2m?)/(8—m?). Consent that m= /3=1, §, j, 1%, ete. 

Substitute in formula, and x1, 2, 7, 26, 97, 362, 1351, etc.. and the areas of 

the triangles are as follows: 4/(3x2x1x0)=3x1x0=-0 ; )/(6x3x2x1)=3 

X2x ; p/(21X8x7x6)=3x7x4=84 ; (18x 27 x 26 x 25)==3 x 26x 15= 
1170 ; (291 x 98 x 97 x 96) =3 x 97 x 56==16296 ; 1 (1086 x 363 x 362 x 361=3 x 

362 x 209==226974, ete. 

VIII. Odd convergents: 4/3=1, §, 1%, 388, ete. 6X1X1=6 ; (6X 

3X5)—6==84 ; (6X11X19)—84=1170; (6X41X71)—1170=16296 ; (6% 153 265) 

— 16296 —226974 ; ete. 

IX. Relation of areas: 144,—An-1=Ani1; M=14. 6; 14X6=84; 

(14X84)—6=1170 ; (14K1170) —84=16296 ; (1416296) —1170—226974, etc. 

X. When «x represents the half-base, 2z—1, 2x and 2r+1 are the sides, 

t—2 and x+2 are the segments of the base , }“[3(2?—1®) is the altitude of the 

triangle ; and x)/[3(2*—1*)]/(4z®—1?) is the half-sine of angle opposite base. 

Giving x same values as in I, the half-sines are found to be 3=(2%1)/(2?+1%) ; 

$8=(7X4)/(7? +42) 5 B89 -=(26XK15)/(262 +15?) = (97X56) /(97? + 56?) ; 
75658 /(3622 + 2092 ) = (862209) /(3622 + 2092) ; ete. 

Multiply the product of two sides by one-half sine of included angle for 

area of triangle. 

+ 1][(2X1) (2? +12)] ; [(2X7)—1] 

c= 

here 
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[(2X7) + 1][(4X7) /(42 +. 72)] = 18K 15K 38 T= 84 [(2X26)—1][(2%264 1] 
[(15X26)/( 152 + 262 )] =51X53% 389 =38X15X26=1170 ; [(2*97)—1][(2X97 +1] 
[(56X97) /(56? + 972 )] =193X195X = 356% 97 = 16296 [(2*362)—1][(2X 
362) + 1] [(209X 362) /(2092 + 3622 )] 723X725 = 3 209X362 = 226974 ; 
etc. 

Here it should be noticed that in canceling both sides the denomina- 

tor of the half-sine disappears, and three times the product of the terms of the nth 
even convergent in the expansion of ;/3 brings the area to light ; also observe, 

since sides and denominator fall out of view, and factor 3 stands constant, the 

area must be determined by the numerator of these half-sines, and this series may 
be continued by use of Magic M=14 ; 14K2=28 ; (14*28)—2=390 ; (14390) 

—28=5432 ; (145432) —390 = 75658 ; etc. 

Also solved by JOSIAH H. DRUMMOND, M. A. GRUBER, and G. B. M. ZERR. 

AVERAGE AND PROBABILITY. 

60. Proposed by B. F. FINKEL, A. M.,M. Sc.,Professor of Mathematics and Physics, Drury College, Spring- 
field, Mo. 

Four points are taken at random within an ellipse. 

form a reentrant quadrilateral ? 

What is the chance that they 

Solution by G. B. M. ZERR, A. M., Ph. D., President and Professor of Mathematics, The Russell College, 
Lebanon, Va. 

We will solve this problem for the quadrant, the semi-ellipse, and the 

whole ellipse. 

Let ABLI be the ellipse, and AB’LI' 

the circumscribing circle ; M, N, P the three 

random points ; through M, N, P draw CD, 

EF, GH perpendicular to AO, EF intersect- 
ing MP at K. The triangle will pass through 

all the possible variations by considering only 

those relative positions of the points in which 

CD lies to the right of GH, and EF between 

CD and GH. 
If the fourth point falls anywhere on 

the triangle formed by joining the points M, 

N, P, the quadrilateral thus formed will be 

reentrant. 

Let OA=a, OB=b, GP=2, CM=y, EN=z, GQ=2', CS=y', ER=2', 
ZGOH=6, COD=9, EOF=". 

Then we have 2’=bsin#, y’=bsing, z’=bsiny:, v=1/(cosp—cosf), 2’ =v[x 

(cosp—cosy) + 

Area MNP=}a[x(cosp—cos}) + y(coss— cos) + z(cos#—cosp)]=u, when 

z<z". Area + y(cos4— + when 

f 

a 

. 

. 

a 
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z>z'. An element of surface at M is asingd@dy, at N it is asiny-dy-dz, at P it is 

asinédédx. 

The limits of 6 are (for quadrant) 0 and $7; of m, 0 and @; of ¥, g and 

6; of x, O and 2’; of y, 0 and 4’; of z, 0 and 2”, and 2” and 2’: 

Hence the required average area is, 

asin @déasin pd pasiny-dy-dxdydz 

2 

{[2(cosp— cos) + y(cost—cos4)]* +[x(cosp— cosy) 

+y(cosy—cos4) + bsinys(cos4— cosy) ]? }sin#sin 

—cos4) + 6bxsin + 2b? sin’ 

+3b*sin psin? + 3b? sin? —cosp)(cosys—cos4)] 

x 

__ 32ab J. [2sin* 4sin + 2sin4sin* 

+3sin? cos) +3sin4sin psin? 

+3sin? 

__ 16ab 

+sin* Gcosfcosp + sin® peosp 

P 

= 

A 

’ 

« 
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+ 6cos' bcos p+ beosfcos? p+ 12+ bcos? 4 + 6cos*? p—3bcosfeosp 

¢)sindcosp + 9( ¢)sin ]sin® pdbd@p 

(690+ 36Acosd— 124sin? 6— 124sin44—60sin 45sin4cos0 

— 10sin* 4cos4 + 8sin* Feos#)sin® 4d 4 

= 16 131 ) 

Sa? 

For the semi-ellipse above the major axis, the limits of 6 are 0 and z, and 

those of the other variables the same as above. The number of ways the three 

points can be taken in the semi-ellipse is eight times the number of ways in a 

quadrant, and hence we get 

ab 32 
— 10sin* + 3sin5 Acos#)sin? ddA 047 Bn? 7). 

For the limits of 4 are 0 and 27, and the points can be taken eight times 

the number of ways in semi-ellipse. Hence 

ab 

7273 
(694 + 864c0s6 — 12 4sin® 6— 124sin4 6— 60sind—45sinAcosA 

0 

— 10sin? 4cos4 + 3sin® #cos6)sin® 6d6=35ab /487. 

Let C, C,, C, be the respective chances required. 

4 35. («16 131 

mab 

: 

4A 4A, 35 32 

mab mab 42 37? 

127? 
: 

. 



MISCELLANEOUS. 

58. Proposed by EDMUND FISH, Hillsboro, Ill. 

The longest noonday winter shadow of an upright object is found to be seven times 

as long as the shortest summer shadow of the same object. Required the latitude of the 
place. 

I. Solution by S. HART WRIGHT, A. M., M. D., Ph. D., Penn Yan, N. Y. 

In the right plane triangles 4BC and APC, let the vertical AC(—unity) 

be the rod that casts a shadow from C to B, and from 

C to P, when the sun is at S and D._ Extend CA to 

the zenith Z, BA to S and PA to D. Bisect DAS with 

QA. Let 2 BAC=y==ZAS. DAS is double the ob- 

liquity of the ecliptic—26— 7 PAB=46° 54’ 30"=v. 

DAQ=SAQ=6, and Q must be on the equator, and 

QAZ=the required latitude—A. CP=-7CB. Put 7 

=m, and tan-'m=f=81° 52’ 12”. We have CB= 

tany, and CP=tan(y+v), and mtany=tan(y+v), a 

trigonometric equation, from which we derive sin(2y 

+v)=cot(f$+45°)sinv. Four values of x result, the 

upper signs giving the only acceptable value of y14° 

57’ 30”. The other signs make the 7 PAC>90°. Now A==y+0==38° 24’ 45” 

north or south, as the seasons are interchangeable on each side of the equator. 

II. Solutiom by G. B. M. ZERR, A. M., Ph. D., President and Professor of Mathematics, The Russell College, 
Lebanon, Va. 

Let AC be the upright object length=1, CP the earth, SB the summer sun, 
DP the winter sun. Let ¢=latitude, d=north, —d=south declination of the 

sun, and let the winter shadow be n times as long as the summer shadow. 

Then /CAB=(¢—60), CAP=(¢4+6), CP=n.CB, . CP=lItan(¢+4+ 9), 

CB=Itan(¢—4). 

94). 

(n+1)tan? ¢tand—(n—1)tandsec? 6 + (n+ 1)tand=0. 

2(n—1)tand 

__ (n—2)+y [(n—1)? —(n +1)? sin? 26] 

Now 6=23° 27’ 30”, .*. tand=.793428 or 1.26035. 

6=88° 25’ 46” or 51° 34’ 14”. 

The two values of tang are equal when n=(1+sin26)/(1—sin26). 

n=6.4118, 6=45°. When ¢=6, and ¢+d=90", n is infinite. 

In the first case the summer shadow is zero and the winter shadow is fi- 
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nite ; in the second case, the winter shadow is infinite and the summer shadow 

is finite. 

In formula (A), 6 and n can have any values within proper limits. 

Also solved by W. W. LANDIS, and J. SCHEFFER. 

59. Proposed by J. A. CALDERHEAD, M. Sc., Professor of Mathematics, Curry University, Pittsburg, Pa. 

When a cylindrical china jar, standing upon the ground, receives the sun’s rays ob- 

liquely, a bright curve is observed to form itself at the bottom of the jar, and it‘is found 
that the shape and dimensions of this curve are not affected by the varying elevations of 

the sun: account for this latter circumstance, and determine the nature of the bright 

eurve. [From Parkinson’s Optics.] 

Solution by ALFRED HUME, C. E., D. Sc., Professor of Mathematics, University of Mississippi, University, 
Mississsppi. 

All rays striking any element of the cylindrical surface lie in a vertical 

plane. Their reflections form the other face of the dihedral angle whose bisector 

passes through the axis of the cylinder. These reflected rays intersect the base 
of the cylinder in a straight line. There is thus formed a system of lines, and 

the bright curve observed is their envelope. The altitude of the sun does not 

affect the position of the vertical planes; and, therefore, the intersections with 

the bottom of the jar are unchanged, and the continual intersection of the consec- 

utive lines so formed produces a curve invariable as to its shape and size. 

The bright curve is the caustic by reflection for the circle, the incident 

rays being parallel. The following general property of caustics by reflection for 

parallel rays is established in Price’s Infinitesimal Calculus: ‘The distance 
from the incident point in the reflecting curve to the point of intersection of two 

consecutive reflected rays, is equal to one-fourth of the chord of the circle 

of curvature at the point of incidence which is parallel to the incident ray.’’ 
A. Take the center of the circle as the origin, the X-axis parallel to the 

incident rays, the Y-axis perpendicular to them. 

Let AB be an incident ray, BC its reflection, the 

angle between them being 20. Take BP along BC 

equal to one-half of DB, D being the intersection of 

AB with the Y-axis. Then, according to the prin- 

ciple quoted above, P is a point of the caustic. To 

find the locus of P: Draw OB, denoting it by a. 

From P drop a perpendicular to AB meeting it 

at H. Denoting the codrdinates of P by x and y, 

«= DB—HB=acos0— sacosécos20, 

y=OD—PH= asind— dacosésin20. 

From these «= jacos¢— tacos30, 

and y= fasind— jasin3¢, 

These may be written 

4 

{ 

| | 
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a= (4a + ta)/(4a)]?, 

and y=(ja+ 

These are the well-known equations of an epicycloid, the radii of the fixed 

and rolling circles being 3a and ja respectively. 

B. The following geometrical solution is very much like one given in 

Wood’s Optics, and was suggested by it. 

Referring to the same figure, erect at P a perpendicular to CB, meeting 

OB at E. Comparing the similar triangles EPB and ODB, ED : DB=BP : BD 

=1;2. 

If, then, upon EB, the half of OB, as diameter, a circumference be drawn 

its intersection with CB will be a point of the caustic. With O as center and EO 

as radius describe a semi-circle, intersecting the X-axis at K. : 

The EOK=92, and are EK=}ad. 

Also, since 7 EBP=0, the angle at the center measured by are EP=20 ; 

and are EP=}a.20=}a.0. 

Hence arc EP=are EK. 

The locus of P is, therefore, generated by the circle EPB rolling on the 

circle EK, the points P and K being originally in contact. 

Of course the problem may be solved without assuming the property 

quoted from Price. In Rice and Johnson’s Differential Calculus an excellent so- 

lution is outlined. 

Also solved by C. W. M. BLACK, S. H. WRIGHT, and B. F. FINKEL. 

PROBLEMS FOR SOLUTION. 

ARITHMETIC. 

97, Proposed by J. A. CALDERHEAD, M. Sc., Professor of Mathematics, Curry University, Pittsburg, Pa. 

In what time will $4000 amount to $5134.96, interest at 6% payable annually ? 

#*, Solutions of these problems should be sent to B. F. Finkel, not later than July 10. 

GEOMETRY. 

97. Proposed by CHAS. C. CROSS, Libertytown, Md. 

Prove by pure geometry: The radius of a circle drawn through the centers of the 
inscribed and any twoescribed circles of a triangle is double the radius of the cireumscrib- 

ed circle of the triangle. 

98. Proposed by EDW. R. ROBBINS, Master in Mathematics and Physics, Lawrenceville School, Lawrence- 
ville, N. J. 

Construct a circle which shall pass through two given points and touch a given cir- 

ele, (1) when the distance between the points is less than the diameter of the circle, and 

(2) when it is greater. - 

#*, Solutions of these problems should be sent to B. F. Finkel, not later than July 10. 
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MECHANICS. 

ai 4 Proposed by B. F. FINKEL, A. M.,M. Sc., Professor of Mathematics and Physics, Drury College, Spring- 
eid, Mo. 

A rough sphere of radius a and radius of gyration K, capable of rotating 

about its center, is initially at rest ; another sphere of 1/n the mass and of rad- 

ius b, and radius of gyration k, is placed gently on it, having initially an angular 

velocity « about the common normal which makes an acute angle @ with the ver- 

tical drawn upwards. Prove that the second sphere will not roll off provided 

> where “=a? /nK? +b? /k*. 
(8u+1)b? 

From Routh’s Rigid Dynamics. g 

70. Proposed by CHAS. E. MEYERS, Canton, Ohio. 

A homogeneous sphere, radius 7, having an angular velocity @, gradually 

contracts by cooling. What will be the angular velocity at the instant the radius 

becomes 4r? 

»*, Solutions of these problems should be sent to B. F. Finkel, not later than August 10. 

DIOPHANTINE ANALYSIS. 

68. Proposed by M. A. GRUBER, A. M., War Department, Washington, D. C. 

Find a general value for p in the expression 4p+-1=the sum of two squares. 

69. Proposed by JOSIAH H. DRUMMOND, LL. D., Counselor at Law, Portland, Me. 

Two right angled triangles have the same base which is a mean proportional between 

the two perpendiculars: find a general solution, that will give integral values for all the 
sides of both triangles. 

70. Proposed by PROF. CHARLES CARROLL CROSS, Libertytown, Md. 

Give methods for decomposing numbers into squares, cubes, or biquadrates and 

show that 612003 is the sum of ten cube numbers and that 844933 is the sum of eleven 

biquadrates in thirteen different ways. [From The Mathematical Magazine, Vol. II, No. 10.] 

»*, Solutions of these problems should be sent to J. M. Colaw, not later than August 10. 

AVERAGE AND PROBABILITY. 

65. Proposed by J. SCHEFFER, A. M., Hagerstown, Md. 

What is the average rate of the sun’s motion in declination from the equator to 

the solstices ? 

66. Proposed by REV. W. ALLEN WHITWORTH, A. M. 

A rod 9 feet long is to be divided into three parts, of which A is to have the largest, 
B the next, and C the smallest. If the two fractures are made at random, A’s, B’s, and C’s 

expectations will be respectively 66, 30, and 12 inches. But, if one fracture be made at 

random and the larger portion of the rod be then divided at random, their expectations 

will be 64, 31, and 13 inches. 
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67. Proposed by B. F. FINKEL, A. M.,M. Sc., Professor of Mathematics and Physics, Drury College, Spring- 
field, Mo. 

A person writes » letters and addresses n envelopes; if the letters are placed in the 

envelopes at random, what is the probability that every letter goes wrong? [From Hall 
and Knight’s Higher Algebra.] 

«*» Solutions of these problems should be sent to B. F. Finkel, not later than August 10. 

MISCELLANEOUS. 

62. Proposed by G. B. M. ZERR, A. M.,Ph. D., President and Professor of Mathematics, The Russell College, 
Lebanon, Va. 

How many bushels of wheat will a conical bin 8 feet in diameter at base and 12 feet 

high, hold, if part of the bin is cut off by a plane parallel to the side and passing through 
the center of the base ? 

63. Proposed by F. P. MATZ, D. Sc., Ph. D., Professor of Mathematics and Astronomy, Irving College, Mc- 
chanicsburg, Pa. 

Show that the path of a projectile moving with a constant velocity is an inverted 

eatenary of equal strength. 

x*x Solutions of these problems should be sent to J. M. Colaw, not later than August 10. 

EDITORIALS. 

The degree of Civil Engineer has been conferred on our valued contribu- 

tor, Fremont Crane, by the University of Minnesota. 

In our next issue will appear an article on Symmetric Functions, by Pro- 

fessor E. D. Roe, Associate Professor of Mathematics in Oberlin College, now at 
Erlangen, Germany. 

Dr. David Eugene Smith, Professor of Mathematics in the Michigan State 

Normal School, has accepted the Presidency of the New York State Normal 

School, at Rockport. 

In our last issue, the last two pages of the MonTHLy were hurried into 

print without our having read the proof. That we might have the opportunity 

of eliminating some of the errors which thus appeared in them, we have had 

those two pages reprinted and bound in the present issue. This, we are sure, 

will be appreciated by those who wish to have the volumes of the MonTHiy 
bound. 

THE UNIVERSITY oF CuHicaco. During the summer quarter (July 1 to 

September 23, 1898) the following mathematical courses (four or five hours week- 

ly) will be offered :—By Associate Professor Maschke: Theory of Invariants ; 

Functions of a Complex Variable ;—By Assistant Professor Young : Mathemati- 

cal Pedagogy (to August 15); Culture Calculus ; Plane Trigonometry (to August 
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